Publications
By research topics
EPISODIC DEFORMATION RELATED TO THE SEISMIC CYCLE (NATURE AND EXPERIMENT)
1. Brückner, L.M., Dellefant F., Trepmann, C.A. (2024) Quartz cleavage fracturing and subsequent recrystallization along the damage zone recording fast stress unloading. Journal of Structural Geology. https://doi.org/10.1016/j.jsg.2023.105008.
2. Brückner, L.M., Trepmann, C.A., Kaliwoda M. (2023). Rheology Dependent on the Distance to the Propagating Thrust Tip—(Ultra-)Mylonites and Pseudotachylytes of the Silvretta Basal Thrust. Tectonics https://doi.org/10.1029/2023TC008010.
3. Taufner R., Viegas G., Trepmann C.A. (2023) Interplay between crystal-plasticity, fracturing and dissolution-precipitation creep in lower-crustal ultramylonite from hole U1473A, Atlantis Bank, Southwest Indian Ridge. Journal of Structural Geology 167, 104780. https://doi.org/10.1016/j.jsg.2022.104780
4. Hentschel, F., Janots E., Magnin, V., Brückner, L.M., Trepmann, C.A. (2022) Transient deformation and long-term tectonic activity in the Eastern Alps recorded by mylonitic pegmatites, Journal of Structural Geology. https://doi.org/10.1016/j.jsg.2021.104507
5. Brückner, L.M., Trepmann, C.A. (2021) Stresses during pseudotachylyte formation - evidence from deformed amphibole and quartz in fault rocks from the Silvretta basal thrust (Austria). Tectonophysics 817 (2021) 229046, https://doi.org/10.1016/j.tecto.2021.229046.
6. Trepmann, C.A., Seybold, L., Janots, E. (2019). Deformation at low and high stress-loading rates. Geoscience Frontiers 10: 43-54, https://doi.org/10.1016/j.gsf.2018.05.002.
7. Hentschel, F., Trepmann, C.A., Janots E., (2019) Deformation of feldspar at greenschist facies conditions – the record of mylonitic pegmatites from the Pfunderer Mountains, Eastern Alps. Solid Earth, 10, 95–116, https://doi.org/10.5194/se-10-95-2019
8. Trepmann C.A., Hsu C., Hentschel F., Döhler K., Schneider C., Wichmann V. (2017) Recrystallization of quartz after low-temperature plasticity - the record of stress relaxation below the seismogenic zone. Journal of Structural Geology. http://dx.doi.org/10.1016/j.jsg.2016.12.004.
9. Matysiak A., Trepmann C.A. (2015) The deformation record of olivine in mylonitic peridotites from the Finero Complex, Ivrea Zone – separate deformation cycles during exhumation. Tectonics 34, 2514–2533.
10. Trepmann C.A., Renner, J. Druiventak, A. (2013) Experimental deformation and recrystallization of olivine – processes and time scales of damage healing during postseismic relaxation at mantle depths. Solid Earth, 4, 423–450.
11. Trepmann, C.A., Stöckhert B. (2013) Short-wavelength undulatory extinction in quartz recording coseismic deformation in the middle crust – an experimental study. Solid Earth, 4, 263–276.
12. Bial, J., Trepmann, C.A. (2013) The microstructural record of porphyroclasts and matrix of serpentinite mylonites - from brittle and crystal-plastic deformation to dissolution-precipitation creep. Solid Earth, Solid Earth 4, 315-330.
13. Matysiak, A.K., Trepmann, C.A. (2012) Crystal-plastic deformation and recrystallization of peridotite controlled by the seismic cycle. Tectonophysics, 530-531: 111-127.
14. Druiventak, A., Matysiak, A.K., Renner, J., Trepmann, C.A. (2012) Kick-and-cook experiments on peridotite: simulating coseismic deformation and postseismic creep. Terra Nova 24, 62-69.
15. Druiventak, A., Trepmann, C.A., Renner, J. and Hanke, K. (2011) Low-temperature plasticity of olivine during high stress deformation of peridotite at lithospheric conditions – An experimental study. Earth Planet. Sci. Lett., 311: 199-211.
16. Trepmann C.A., Stöckhert B., Dorner D., Küster M., Röller K., Moghadam R. H. (2007) Simulating coseismic deformation of quartz in the middle crust and fabric evolution during postseismic stress relaxation – an experimental study. Tectonophysics 442:83-104.
17. Orzol J., Stöckhert B., Trepmann C.A., Rummel F. (2006) Experimental deformation of synthetic wet jadeite aggregates. Journal of Geophysical Research 111: B06205, doi:10.1029/2005JB003706.
18. Trepmann C.A., Stöckhert B. (2003) Quartz microstructures developed during non-steady state plastic flow at rapidly decaying stress and strain rate. Journal of Structural Geology, 25: 2035-2051.
19. Orzol J., Trepmann C.A., Stöckhert B., Shi, G. (2003) Critical shear stress for mechanical twinning of jadeite - an experimental study. Tectonophysics, 372: 135-145.
20. Trepmann C.A., Stöckhert B. (2002) Cataclastic deformation of garnet: A record of synseismic loading and postseismic creep. Journal of Structural Geology, 24: 1845-1856.
21. Trepmann C.A., Stöckhert B. (2001) Mechanical twinning of jadeite - an indication of synseismic loading beneath the brittle-ductile transition. International Journal of Earth Sciences, 90: 4-13.
METAMORPHISM AND DEFORMATION
1. Engvik, A.K., Trepmann, C.A., Håkon Austrheim (2023). Microfabric evolution during metasomatism and deformation, exemplified by the nodular sillimanite gneisses (Bamble lithotectonic domain, South Norway). Lithos 456-457, https://doi.org/10.1016/j.lithos.2023.107317.
2. Hentschel, F., Janots E., Trepmann, C.A., Magnin, V., Lanari, P. (2020) Corona formation around monazite and xenotime during greenschist facies metamorphism and deformation. Eur. J. Mineral., 32, 521–544.
3. Engvik, A.K., Mertens, C., Trepmann, C.A. (2020) Episodic deformation and reactions in mylonitic high-grade metamorphic granulites from Dronning Maud Land, Antarctica. Journal of Structural Geology 141, https://doi.org/10.1016/j.jsg.2020.104196
4. Seybold, L., Dörr, W., Trepmann, C.A., Krahl, J., (2020). New constraints from U-Pb dating of detrital zircons on the paleogeographic origin of metasediments in the Talea Ori, central Crete. Geological Magazine. DOI: https://doi-org.emedien.ub.uni-muenchen.de/10.1017/S0016756819001365
5. Seybold, L. Trepmann, C.A., (2019) A ductile extensional shear zone at the contact area between HP-LT metamorphic units in the Talea Ori, central Crete, Greece: deformation during early stages of exhumation from peak metamorphic conditions. International Journal of Earth Sciences 108: 213–227 https://doi.org/10.1007/s00531-018-1650-6
6. Janots, E., Austrheim, H., Spandler. C., Hammerli, J., Trepmann, C.A., Berndt, J., Magnina, V., Kemp, A.I.S. (2017) Rare earth elements and Sm-Nd isotope redistribution in apatite and accessory minerals in retrogressed lower crust material (Bergen Arc, Norway). Chemical Geology Chemical Geology 484: 120–135, http://dx.doi.org/10.1016/j.chemgeo.2017.10.007.
7. Chakraborty S., Mukhopadhyay D., Chowdhury P., Rubatto D., Anczkiewicz R., Trepmann C., Gaidies F., Sorcar N., Dasgupta S. (2017) Channel Flow and Block tectonics in the Himalaya: Insights from petrological, structural, geochronological and geospeedometric studies in Sikkim, NE India.Lithos 282–283, 464–482
8. Mukhopadhyay D., Chakraborty S, Trepmann C., Rubatto D., Anczkiewicz R., Gaidies F., Dasgupta S., Chowdhury P. (2017) The nature and evolution of the Main Central Thrust: Structural and geochronological constraints from the Sikkim Himalaya, NE India.Lithos 282–283, 447–463
9. Wassmann S., Stöckhert B., Trepmann C.A. (2011) Dissolution precipitation creep versus crystalline plasticity in high pressure metamorphic serpentinites. Geol. Soc., London, Special Publ., 360, 129-149.
10. Kasioptasa,A., Geislera, T., Perdikouria, C., Trepmann, C.A., Gussonea, N., Putnis A. (2011) Polycrystalline apatite synthesized by hydrothermal replacement of calcium carbonates. Geochimical et cosmochimica acta, 75, 3486-3500.
11. Moghadam R. H., Trepmann C.A., Stöckhert B., Renner, J. (2010) Rheology of synthetic omphacite aggregates at high pressure and high temperature. Journal of Petrology 51: 921-945.
12. Trepmann C.A., Lenze A., Stöckhert B. (2010) Static recrystallization of vein quartz pebbles in a high pressure - low temperature metamorphic conglomerate. Journal of Structural Geology 32, 202-215.
13. Stöckhert B., Trepmann C.A., Massonne H.-J. (2009) Decripitation of UHP fluid inclusions in garnet - cause of diverse phase assemblages and indication of extreme decompression rates (Saxonian Erzgebirge, Germany). Journal of Metamorphic Geology, 27: 673-684.
14. Trepmann C.A., Stöckhert B. (2009) Microfabric of folded quartz veins in metagreywackes: dislocation creep and subgrain rotation at high stress. Journal of Metamorphic Geology 27: 555–570.
15. Trepmann C.A., Stöckhert B., Chakraborty S. (2004) Oligocene trondhjemitic dikes in the Austroalpine basement of the Pfunderer Berge, Südtirol – level of emplacement and metamorphic overprint. European Journal of Mineralogy 16: 641-659.
16. Stöckhert B., Duyster J., Trepmann C.A., Massonne H.-J. (2001) Microdiamond daughter crystals from supercritical COH + silicate fluids included in garnet, Erzgebirge, Germany. Geology, 29: 391-394.
IMPACT GEOLOGY AND SHOCK EFFECTS
1. Dellefant F., Trepmann C. A., Schmahl, W.W., Gilder S. A., Sleptsova I. V., Kaliwoda M. (in print) Ilmenite phase transformations in suevite from the Ries impact structure (Germany) record evolution in temperature, pressure, and oxygen fugacity conditions. American Mineralogist.
2. Dellefant F., Seybold L., Trepmann, C.A., Gilder S. A., Sleptsova I. V., Hölzl, S., Kaliwoda M. (2024) Emplacement of shocked basement clasts during crater excavation in the Ries impact structure. International Journal of Earth Sciences. https://doi.org/10.1007/s00531-024-02403-z
3. Sleptsova. I.V., Gilder S.A., Dellefant F., Trepmann C.A., Ahanin N., Pohl J. (2024) Thermal and Structural History of Impact Ejecta Deposits, Ries Impact Structure, Germany. Journal of Geophysical Research: Solid Earth, 129, e2023JB027460. https://doi.org/10.1029/2023JB027460.
4. Seybold L., Trepmann, C.A., Hölzl, S., Pollok, K., Langenhorst, F., Dellefant, F., Kaliwoda M. (2023). Twinned calcite as an indicator of high differential stresses and low shock pressure conditions during impact cratering, Meteoritics & Planetary Science. doi: 10.1111/maps.14056.
5. Dellefant F., Trepmann C. A., Gilder S. A., Sleptsova I. V., Kaliwoda M., & Weiss B. P., (2022). Ilmenite and magnetite microfabrics in shocked gneisses from the Vredefort impact structure, South Africa. Contributions to Mineralogy and Petrology, 177:88 https://doi.org/10.1007/s00410-022-01950-5
6. Trepmann, C.A., Dellefant, F., Kaliwoda, M., Hess, K.-U., Schmahl, W.W., Hölzl, S. (2020) Quartz and cristobalite ballen in impact melt rocks from the Ries impact structure, Germany, formed by dehydration of shock-generated amorphous phases. Meteoritics & Planetary Science DOI: 10.1111/maps.13590
7. Koch, S.A., Pohl J., Gilder S.A., Trepmann, C. (2012) Geomagnetic field intensity recorded after impact in the Ries meteorite crater, Germany. Geophysical Journal International, 189:383-390.
8. Trepmann C.A. (2009) Shock effects and pre-shock microstructures in hydrothermal quartz veins from the Rochechouart impact structure, France. Journal of Structural Geology, 31 1183–1196.
9. Trepmann C.A. (2008) Shock effects in quartz: compression versus shear deformation – an example from the Rochechouart impact structure, France. Earth and Planetary Science Letters 267: 322-332. doi:10.1016/j.epsl.2007.11.035.
10. Trepmann C.A., Spray J.G. (2006) Shock-induced crystal-plastic deformation and post-shock annealing of quartz from crystalline target rocks of the Charlevoix Structure, Canada. European Journal of Mineralogy 18: 161-173.
11. Trepmann, C.A., Spray, J.G. (2005) Planar microstructures and Dauphiné twins in shocked quartz from the Charlevoix impact structure, Canada. in “Large Meteorite Impacts III”, T. Kenkmann, F. Hörz, A. Deutsch, eds. Geol. Soc. Am. Spec. Paper, 384: 315-328.
12. Trepmann, C.A., Götte, T, Spray, J.G. (2005) Impact-related Ca-metasomatism in crystalline target rocks from the Charlevoix structure, Canada. Can. Min. 43: 553-567.